

PX-003-1204007

Seat No. _____

M. Sc. (Physics) (Sem. IV) (CBCS) Examination

August - 2020

ET-11: Electronic Communication

Faculty Code: 003

Subject Code: 1204007

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Number on right margin indicates marks.

1 Attempt Any Seven:

14

- (a) For a carrier frequency of 6 GHz and a distance of 50 km, determine the free space path loss.
- (b) What will be the angle of elevation of an antenna when the virtual height and actual height of the ionosphere are equal?
- (c) What are the normal modes of radio wave propagation? Give range of frequencies used for each mode.
- (d) What are the various links of connections in satellite communication?
- (e) What will be the distance to the radio horizon for an antenna height 4040 feet above ground level?
- (f) What are the different techniques for digital modulation?
- (g) Define: Shannon's limit for information capacity.
- (h) Enlist different types of losses in optical fiber system.
- (i) "Transmission line is called wireless link": explain in brief.
- (j) What do you mean by dominant mode in rectangular wave guide?

2 Attempt Any Two:

- (A) What is ionosphere in earth's upper atmosphere?

 What are its different layers? Which layer is used for radio wave communication? Explain ionospheric HF radio wave propagation hence explain the terms: Plasma and critical frequencies.
- (B) How the virtual height of the ionosphere is measured? 7 What is secant law? Explain skip distance and service range.

Determine maximum usable frequency for a critical frequency of 20 MHz and an angle of elevation 45°.

- (C) What is atmospheric duct radio wave communication? 7 Discuss duct propagation and tropospheric scatter propagation in detail.
- 3 (A) Determine elevation angle and azimuth angle for a geo-stationary satellite at the given earth station:

 Earth station latitude: 22°

Earth station longitude: 71°

Satellite latitude : 0°

Satellite longitude: 74°

Distance from earth centre to satellite : 42164 km and radius of earth is 6378.14 km

(B) Write a note on satellite orbital patterns and geo-stationary satellite.

OR

- **3** (A) Write a detailed note on Quadrature Amplitude Modulation.
 - (B) Draw the internal layout of a communication satellite 7 and explain function of each section in detail including uplink & down link models and transponder.

7

7

7

4 Attempt Any Two:

- (A) Show that how a TE10 wave can be formed by superposition of two TEM waves. Prove the relation : $1/\lambda_g^2 = 1/\lambda^2 = 1/2a^2$ for a rectangular wave guide, where 'a' is broader dimension of rectangular waveguide.
- (B) Write a brief note on infinite transmission line with necessary expressions. Also, define secondary constants of transmission line.
- (C) Explain Physics of propagation of light through optical fiber.

5 Attempt Any Two:

14

7

- (A) Write a note on Ground wave propagation
- (B) Write a note on BPSK technique of digital modulation
- (C) Write a note on transmission line with any termination.
- (D) Differentiate transmission line and wave guide. Write a note on rectangular waveguide.

3